Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Shu-Ping Yang, ${ }^{\text {a }}$ Li-Jun Han, ${ }^{\text {b }}$ Hai-Tao Xia ${ }^{\text {a }}$ and Da-Qi Wang ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, ${ }^{\mathbf{b}}$ Department of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and ${ }^{\text {c College of Chemistry }}$ and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China

Correspondence e-mail:
yangshuping@hhit.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.047$
$w R$ factor $=0.147$
Data-to-parameter ratio $=13.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-7-\{[4-(Dimethylamino)cinnamoyl]oxy\}-4-methylcoumarin

The title compound \{systematic name: 4-methyl-2-oxo-2H-1-benzopyran-7-yl 3-[4-(dimethylamino)phenyl]prop-2-enoate\}, $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{ClO}_{4}$, has an E configuration and the dihedral angle between the coumarin unit and the benzene ring is $81.70(6)^{\circ}$. The molecules are linked by two $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a $C(4) C(6)\left[R_{2}^{1}(6)\right]$ chain of rings. Adjacent chains are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds rings into stepped sheets. Adjacent sheets are linked by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a three-dimensional network.

Comment

Coumarin derivatives exhibit a wide variety of pharmacological activities including anti-HIV activity (Xie, et al., 2001), antibacterial activity (Tanitame et al., 2004) and inhibition of acetylcholinesterase (AChE) (Brühlmann et al., 2001). We have reported the crystal structure of one coumarin derivative with 7-cinnamoyloxy (Yang et al., 2006). As part of our study of the crystal structures of coumarin derivatives with 7cinnamoyloxy, we report here the crystal structure of a new coumarin derivative, (I).

(I)

In (I) (Fig. 1), the molecules have an E configuration, with the coumarin unit and the benzene ring located on opposite sides of the $\mathrm{C}=\mathrm{C}$ bond. The dihedral angle between the coumarin unit and the benzene ring of the 7-cinnamoyloxy is $81.70(6)^{\circ}$. The coumarin unit is almost planar, the dihedral angle between the pyrone and the benzene rings being 1.2 (2) ${ }^{\circ}$. The geometric parameters for (I) are normal.

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Received 31 August 2006
Accepted 3 September 2006

Figure 2
Part of the crystal structure of (I), showing the formation of a $C(4)$ $C(6) R_{2}^{1}(6)$ chain of rings along the [010] direction. For the sake of clarity, H atoms not involved in the motif shown have been omitted [symmetry codes: $\left.(*)-x, \frac{1}{2}+y, \frac{1}{2}-z ;(\#)-x,-\frac{1}{2}+y, \frac{1}{2}-z ;(\&) x, 1+y, z\right]$. Dashed lines indicate hydrogen bonds.

Figure 3
Part of the crystal structure of (I), showing the formation of a sheet. For the sake of clarity, H atoms not involved in the motif shown have been omitted [symmetry codes: $\left(^{*}\right) 1-x, 2-y,-z$]. Dashed lines indicate hydrogen bonds.

In the crystal structure of (I), the molecules are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a $C(4) C(6) R_{2}^{1}(6)$ chain of rings (Bernstein et al., 1995) along the [010] direction. Atoms O 2 act as a bifurcated acceptor, and atoms C 2 and C 10 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom

Figure 4
The packing of (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.

O 2 in the molecule at $\left(-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ (Fig.2). Adjacent chains of molecules of (I) are linked by four $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds into a stepped sheet, so generating an $R_{2}^{1}(6)\left[R_{2}^{2}(10) R_{2}^{2}(14)\right]$ motif (García-Báez et al., 2002) (Fig.3). Adjacent sheets are linked by one weak intermolecular C $\mathrm{H} \cdots \mathrm{O}$ interaction $\left[\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{\mathrm{ii}}\right.$, symmetry code: (ii) $\left.1-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$, resulting in the formation of a threedimensional network (Fig. 4 and Table 1).

Experimental

To a solution containing 4-methyl-7-hydroxycoumarin (1.76 g , $10 \mathrm{mmol})$ and anhydrous pyridine (10 ml), a solution of 4-dimethylaminocinnamyl chloride ($2.09 \mathrm{~g}, 10 \mathrm{mmol}$) and anhydrous acetone $(10 \mathrm{ml})$ was slowly added at $278-283 \mathrm{~K}$, with stirring for 30 min . The reaction mixture was stirred continuously for 24 h at room temperature ($298-300 \mathrm{~K}$), and then poured into ice-water (200 ml). The resulting solid was filtered off, washed with water and dried at room temperature. Yellow crystals of (I) suitable for X-ray structure analysis were obtained by recrystallizing the crude product from ethanol (m.p. 471-473 K).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{4}$
$M_{r}=349.37$
Monoclinic, $P 2_{1} / c$
$a=8.174$ (3) A
$b=9.071$ (3) \AA
$c=24.175$ (9) \AA
$\beta=97.670(6)^{\circ}$
$V=1776.5(11) \AA^{3}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.954, T_{\max }=0.969$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.147$
$S=1.01$
3135 reflections
237 parameters
H -atom parameters constrained
$Z=4$
$D_{x}=1.306 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, yellow
$0.53 \times 0.42 \times 0.35 \mathrm{~mm}$

9015 measured reflections
3135 independent reflections
1480 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.067$
$\theta_{\text {max }}=25.0^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0575 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.0116 (15)

organic papers

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.93	2.56	$3.423(4)$	154
$\mathrm{C} 10-\mathrm{H} 10 A \cdots 2^{\mathrm{i}}$	0.96	2.51	$3.426(4)$	160
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 1^{\text {ii }}$	0.93	2.76	$3.619(3)$	154
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 4^{\text {iii }}$	0.93	2.52	$3.371(3)$	152
C15-H15 $\cdots 4^{\text {iii }}$	0.93	2.59	$3.402(4)$	145
Symmetry codes:	(i)	$-x, y+\frac{1}{2},-z+\frac{1}{2} ;$	(ii)	$-x+1, y-\frac{1}{2},-z+\frac{1}{2} ;$
$-x+1,-y+2,-z$.				

All H atoms were positioned geometrically and refined as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}$ (methyl C), and $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Siemens,1996); cell refinement: SAINT (Siemens,1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Brühlmann, C., Ooms, F., Carrupt, P. A., Testa, B., Catto, M., Leonetti, F., Altomare, C. \& Carotti, A. (2001). J. Med. Chem. 2001, 44, 3195-3198.
García-Báez, E. V., Martínez-Martínez, F. J., Höpfl, H. \& Padilla-Martínez, I. I. (2002). Cryst. Growth Des. 3, 34-45.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachi, M. \& Yamagishi, J. (2004). J. Med. Chem. 47, $3693-$ 3696.

Xie, L., Takeuchi, Y., Cosentino, L. M., McPhail, A. T. \& Lee, K. H. (2001). J. Med. Chem. 44, 664-671.
Yang, S.-P., Han, L.-J., Xia, H.-T. \& Wang, D.-Q. (2006). Acta Cryst. E62, o4181-o4182.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

